SU-F-T-168: Development and Implementation of An Anthropomorphic Head & Neck Phantom for the Assessment of Proton Therapy Treatment Procedures.

نویسندگان

  • D Branco
  • P Taylor
  • S Frank
  • H Li
  • X Zhang
  • H Mehrens
  • M Guindani
  • D Followill
چکیده

PURPOSE To design a Head and Neck (H&N) anthropomorphic QA phantom that the Imaging and Radiation Oncology Core Houston (IROC-H) can use to verify the quality of intensity modulated proton therapy (IMPT) H&N treatments for institutions participating in NCI clinical trials. METHODS The phantom was created to serve as a remote auditing tool for IROC-H to evaluate an institution's IMPT planning and delivery abilities. The design was based on the composition, size, and geometry of a generalized oropharyngeal tumor and contains critical structures (parotids and spinal cord). Radiochromic film in the axial and sagittal planes and thermoluminescent dosimeters (TLD)-100 capsules were embedded in the phantom and used to perform the dose delivery evaluation. A CT simulation was used to create a passive scatter and a spot scanning treatment plan with typical clinical constraints for H&N cancer. The IMPT plan was approved by a radiation oncologist and the phantom was irradiated multiple times. The measured dose distribution using a 7%/4mm gamma analysis (85% of pixels passing) and point doses were compared with the treatment planning system calculations. RESULTS The designed phantom could not achieve the target dose prescription and organ at risk dose constraints with the passive scatter treatment plan. The target prescription dose could be met but not the parotid dose constraint. The average TLD point dose ratio in the target was 0.975, well within the 5% acceptance criterion. The dose distribution analysis using various acceptance criteria, 5%/4mm, 5%/3mm, 7%/4mm and 7%/5mm, had average pixel passing rates of 85.9%, 81.8%, 89.6% and 91.6%, and respectively. CONCLUSION An anthropomorphic IMPT H&N phantom was designed that can assess the dose delivery of proton sites wishing to participate in clinical trials using a 5% TLD dose and 7%/4mm gamma analysis acceptance criteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of a 2D EPID-based Dosimetry Algorithm for Pre-treatment and In-vivo Midplane Dose Verification

Introduction: The use of electronic portal imaging devices (EPIDs) is a method for the dosimetric verification of radiotherapy plans both pretreatment and in-vivo. The aim of this study was to test a 2D EPID-based dosimetry algorithm for dose verification of some plans inside a homogenous and anthropomorphic phantom and in-vivo, as well. Materials and Methods: </strong...

متن کامل

Comparison of Absorbed Dose in Thyroid and Lens as Organs at Risk Between in vivo Dosimetry and 3-D Treatment Planning Calculation in Head and Neck Radiotherapy by Linac Beam

Introduction: Critical organs and structures may receive significant amounts of irradiation even if they are not the target of radiotherapy or located outside the treatment field. Although the sensitive thyroid gland and lens are not directly the targets of treatment, they can be affected by irradiation during the treatment of tumours in head and neck region. The purpose of thi...

متن کامل

Comprehensive end-to-end test for intensity-modulated radiation therapy for nasopharyngeal carcinoma using an anthropomorphic phantom and EBT3 film

Background: In head and neck radiotherapy, immobilization devices can affect dose delivery. In this study, a comprehensive end-to-end test was developed to evaluate the accuracy of radiotherapy treatment. Materials and Methods: An Alderson Radiation Therapy (ART) anthropomorphic phantom with EBT3 film was used to mimic the actual patient treatment process. Ten patients treated for nasopharyngea...

متن کامل

SU-E-CAMPUS-T-03: Development and Implementation of An Anthropomorphic Pediatric Spine Phantom for the Assessment of Craniospinal Irradiation Procedures in Proton Therapy.

PURPOSE To design an anthropomorphic pediatric spine phantom for use in the evaluation of proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core (IROC) Houston QA Center (formerly RPC). METHODS This phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation by the treatment pl...

متن کامل

Design, Construction and Evaluation of an Anthropomorphic Head Phantom for Assessment of Image Distortion in Stereotactic Radiosurgery Planning Systems

Introduction: In recent years, the use of magnetic resonance (MR) images in radiation treatment planning has drawn considerable attention. However, although the extent of a tumor can be determined in great detail on MR images, the geometric accuracy of these images is limited by distortions stemming from the inhomogeneity of the static background magnetic field, the nonlineari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 43 6  شماره 

صفحات  -

تاریخ انتشار 2016